

 Navigation

 	
 index

 	
 next |

 	Pinax Symposion 0.5dev documentation

PyCon web site

The PyCon web site is an open-source Django project for the PyCon
conference, based on Pinax Symposion.

It came out of development done by Eldarion for DjangoCon US and US PyCon
but has been independently used for a number of other conferences.

We are in the process of cleaning things up and making them more generic.

The project homepage is http://github.com/caktus/pycon.

See README for the installation instructions.

Apps:

	Conference App
	Models

	Proposals

	Helper Functions

	Sponsorship App
	Models

	Template Snippets

	Template Tags

	Registration
	Tutorial Registration Data

	Financial Aid
	Settings

	Reviewer email to applicants

	Templates

	Deploying
	Periodic tasks

	Translation
	Which language is displayed

	Translating

	API
	Authentication

	Proposal data

	IRC logs

	Presentation URLs

	Change Log
	Version 2016.5

	Version 2016.4

	Version 2016.3

	Version 2016.2

	Version 2016.1

	Version 2016.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Conference App

The overall conference settings are managed via the conference app.

Conferences and their sections are added and configured via the Django admin.

Models

Each conference needs an instance of a Conference model. In most cases you
will only need one of these but Symposion does support multiple conferences
sharing a database. Similar to the Django Sites framework, the conference your
project is for is selected by the CONFERENCE_ID setting which defaults to
1 but can be changed to the pk of another conference if you have more than
one.

The conference model has an optional start_date and end_date
indicating when the conference will run. These are optional so you can begin
to configure your conference even if you don’t know the exact dates.

The conference model also has a timezone field which you should set to the
timezone your conference will be in.

There is also a Section model. This is useful if your conference has
different parts to it that run of different days with a different management,
review or scheduling process. Example of distinct sections might be
“Tutorials”, “Talks”, “Workshops”, “Sprints”, “Expo”. Many aspects of
Symposion can be configured on a per-section basis.

Each section has an optional start_date and end_date similar to the
overall conference.

Proposals

Create different kinds of proposals, e.g. talk or tutorial, by creating
ProposalKind objects. You’ll also need to create a Form in the code for
that kind of proposal, and update the setting PROPOSAL_FORMS with
the ProposalKind’s slug as key, and the full package path to the form
to use as value. For example:

PROPOSAL_FORMS = {
 "tutorial": "pycon.forms.PyConTutorialProposalForm",
 "talk": "pycon.forms.PyConTalkProposalForm",
 "poster": "pycon.forms.PyConPosterProposalForm",
}

To allow submitting proposals for a particular Section of the conference,
create a ProposalSection. The site will allow submitting proposals for that
Section between the ProposalSection’s start and end, unless
closed has been set.

Helper Functions

A conference.models.current_conference() function exists to retrieve the
Conference selected by CONFERENCE_ID.

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Sponsorship App

Sponsorship is managed via the sponsorship app.

Sponsorship levels and sponsors are added via the Django admin.

Models

Each sponsor level has a name (e.g. “Gold”, “Silver”) and an order
field which is an integer that is used to sort levels (lowest first). Each
level also has a description which is not currently exposed anywhere
but can be used for private annotation.

Each sponsor has a name, external_url (i.e. link to the sponsor’s
website), contact_name and contact_emails, logo, and level.

A sponsor may also have a private annotation that can be used by
organizers to take notes about the sponsor.

A sponsor will not appear on the site until the active flag is set true.

Template Snippets

The easiest way to include sponsor logos, grouped by level, is to either:

{% include "sponsorship/_vertical_by_level.html" %}

or:

{% include "sponsorship/_horizontal_by_level.html" %}

You can get a wall of sponsors (without level designation) with:

{% include "sponsorship/_wall.html" %}

You can always tweak these templates or use them as the basis for your own.
This is often all you’ll need to do to display sponsors on your site.

If you want to display a specific sponsor logo you can use:

{% include "sponsorship/_sponsor_link.html" with sponsor=sponsor %}

or:

{% include "sponsorship/_sponsor_link.html" with sponsor=sponsor dimensions="100x100" %}

if you want different dimensions than the default 150 x 150.

Template Tags

If you want to retrieve the sponsors and traverse them yourself, you can use
the provided template tags:

{% load sponsorship_tags %}

{% sponsors as all_sponsors %}

or:

{% load sponsorship_tags %}

{% sponsors "Gold" as gold_sponsors %}

if you want to just get a specific level.

You can get the levels with:

{% load sponsorship_tags %}

{% sponsor_levels as levels %}

and you can always iterate over those levels, calling level.sponsors to
get the sponsors at that level.

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Registration

The homepage template utilizes a configurable item to display information
about conference registration. Go to
/YEAR/admin/constance/config/ and set REGISTRATION_STATUS to either
soon, open, or closed. If the value is an empty string or a value
other than the three valid entries, the homepage template will not include any
specific registration status information or link. If other valid states are
required, the homepage template will have to be modified accordingly.

The registration link (to actually register for the conference) just
goes to a page that uses an iframe to wrap the real registration site,
provided by a vendor.

There are a couple of configuration items that need to be agreed with
the vendor each year, a shared secret and a URL. These should then be
configured using the admin in the constance app. Go to
/YEAR/admin/constance/config/ and set CTE_SECRET to this year’s shared
secret and REGISTRATION_URL to this year’s URL.

When ready to open up registration, make sure the vendor is ready, then put a
link on the front page that goes to the URL named “registration_login”, e.g.:

Register!

Tutorial Registration Data

Once the Schedule has been set, and Tutorials are open for registration, a
management command that consumed registration data from the registration
provider can be placed on a cron job for periodic updates.

One must configure the URL of the external CSV report to be consumed. These
should be configured using the admin in the constance app. Got to
/YEAR/admin/constance/config and set CTE_TUTORIAL_DATA_URL to this
year’s URL.

Once this is set, running the command job will update the Tutorial registrants
via consumed emails, as well as set the max attendees for the Tutorial:

python manage.py update_tutorial_registrants

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Financial Aid

Settings

Create a FINANCIAL_AID setting in Django settings. It should be a dictionary.
Values can include:

	email

	The email address that messages related to financial aid come from,
and that users should email with questions. Defaults to
pycon-aid@python.org.

To enable applications, use the admin to create new
FinancialAidApplicationPeriod records with the desired start
and end dates.

Reviewer email to applicants

Reviewers can select one or more applicants on the application list page
and click “Send email”. On the next page, they can enter a subject, pick
a template, and click “Send”. Each applicant selected will receive an email
customized for them using the template chosen.

Templates for this function are created and edited in the admin, at e.g.
/2016/admin/finaid/financialaidemailtemplate/.

Each template has a name, which is just used to identify the template
here and on the mail sending page, and a body, which uses Django templating
to render the body of each email.

In the template body, you have access to the usual Django template tags,
and some variables that you can access:

	application - a FinancialAidApplication object. This gives access to a
lot of useful information from the user’s application that can be used in
your email, e.g.:

Dear {{ application.user.get_full_name }},

{% if application.travel_grant_requested %}You requested a travel grant...{% endif %}

	review - a FinancialAidReviewData object. This gives access to the
information from the review of the application. E.g.:

{% if review.amount %}You are being granted ${{ review.amount }}
toward conference attendance.{% endif %}

You can test your template by sending yourself email messages.

The fields in the FinancialAidApplication and FinancialAidReviewData
records are subject to change, but you can review their current definitions
at https://github.com/caktus/pycon/blob/production/pycon/finaid/models.py

Templates

Editing applications

To create or edit an application, the app uses the finaid/edit.html
template. The context provides a form variable containing the form.
A default template is provided that is customized to work with the PyCon
site.

Email notices

The text for many emails comes from templates whose paths start with “finaid”.

Email template file names have this format:

finaid/{{ recipient }}/{{ event }}/[subject|body].txt

recipient can be:

	applicant

	reviewer

event can be:

	edited

	submitted

	message (a message was added to an application)

subject and body should be self-evident.

Subject templates should be a single line.

So for example, the templates used to notify a reviewer that the applicant
has edited their application are finaid/reviewer/edited/subject.txt
and finaid/reviewer/edited/body.txt.

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Deploying

Some notes on deploying.

Periodic tasks

Arrange to run this command every day or so to expunge the data from
deleted accounts if more than 48 hours since they were deleted:

python manage.py expunge_deleted

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Translation

The PyCon site is set up for use in English and French, for the most part.

Which language is displayed

By default, the request headers control which language is displayed. A user
can change their brower’s settings to say what their preferred languages are,
and if French comes before English, the site will use French when available.
It’ll fall back to English for text that isn’t translated.

A language selector can optionally be displayed on the Dashboard page. This
allows a user to temporarily override the displayed language for the current
session. Whether the language selector is displayed is controlled by the
django-constance setting SHOW_LANGUAGE_SELECTOR, which can be changed in the
admin at /YEAR/admin/constance/config/.

Translating

For CMS pages, there are two body fields. The first is for English. The second
is for French. You’ll have to scroll down a ways to see it when editing a CMS
page.

Text on most other pages, forms, etc is translatable using Django’s
internationalization support. To add or update translations, a developer
would:

	set up a local development environment for PyCon according to the README

	make a new branch off the develop branch

	make sure you have Gnu gettext installed

	install fabric: pip install fabric

	run fab make_messages to update the .po files, in case any translatable
text has changed

	edit locale/fr/LC_MESSAGES/django.po, filling in msgstr with the
translated version of whatever text is in the msgid just above it.

	run fab compile_messages to update the .mo file with the new
translations

	commit the updated .po and .mo files

	open a pull request against the main repo to get your updates included

If a non-developer is going to help with translation, a developer could
do all the steps except editing the .po file, just sending the .po file
to the translator for them to edit and send back.

Any text not translated in the translation files will be displayed as English.

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Pinax Symposion 0.5dev documentation

API

There’s a very basic API.

Authentication

To use the API requires an authentication key. Admins can add records
to the pycon.APIAuth table and then give the randomly generated key to
a user. They can also set a record to disabled (or just delete it) to
revoke access.

When calling the API, users should add a request header HTTP_X_API_KEY
whose value is the key that an admin gave them.

Proposal data

The proposal data methods allow associating an arbitrary blob of text
(perhaps JSON) with a proposal, and retrieving it later.

IRC logs

The IRC logs methods allow associating IRC log lines with a proposal,
and retrieving them later.

The API tracks timestamps to the microsecond (if the database supports
it), but be warned that the Django admin will lose the microseconds if
you edit a log line there.

Presentation URLs

The presentation URLs method allows setting a talk’s video,
slides, and assets URLs.

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Pinax Symposion 0.5dev documentation

Change Log

This change log only goes back to partway-through development
for the 2016 Pycon.

The most recent update is at the top.

Version numbers are tags in git. # numbers are issues and
pull requests in github (https://github.com/pycon/pycon.git).

Version 2016.5

Tuesday, August 18, 2015

	New dashboard buttons for applicants to accept, reject,
withdraw, etc. their financial aid applications (#433, #385)

	Fix for tables not displaying on two pages (#485)

	Fix for sending tutorial emails (#488)

	Fix for changing status of single proposals (#487)

	Fix dropdown menus displaying below sponsor area (#479, #480)

	Enable persistent database connections for performance (#481)

Version 2016.4

Friday, August 14, 2015

	Send tutorial mass emails in the background (#393, #455)

	Django 1.8 (#473)

	Updates for continuous integration with Travis CI (#476)

	Move homepage login/logout buttons to upper right corner
like the rest of the pages (#467, #474)

	Small test fix (#475)

Version 2016.3

Wednesday, August 12, 2015

	Undo bad last-minute migration fix.

Version 2016.2

Wednesday, August 12, 2015

	Fix sponsor logo download (#436)

	Update button colors (#470)

	Past Pycons slideshow (442)

	Combine site style files (#465)

	Add talk URLs (#389):

TALKS/SESSION CHAIRS
• Add the following fields to each talk slot:
⁃ Talk video URL
⁃ Talk slides URL
⁃ Talk assets URL
⁃ Those fields should exist in the /schedule/conference.json feed
⁃ There should be an API which I can use to update those URLs
⁃ it should be as simple as possible, since I’ll call it from scripts
⁃ I don’t care what it looks like, so long as I can call it with 3 lines
of requests (ex, no oauth or anything complex)
⁃ Those fields should be editable from the django admin
⁃ If present and non-empty, they should be shown on the talk description page

Set the video, slides, and assets URLs for a talk.

Expects a POST, with an identifier for the talk as returned in
the conf_key from the conference JSON API (/YYYY/schedule/conference.json)
as part of the URL:

http[s]://xxxxxxxxx/api/set_talk_urls/12345/

and the request body a JSON-encoded dictionary with up to three keys:

	video_url

	slides_url

	assets_url

whose values are syntactically valid URLs. The provided values will be
set on the talk.

Authentication is via an API key like other Pycon site APIs.

	param conf_key:	The ‘conf_key’ value returned for a slot by the conference
JSON method.

	returns:	202 status if successful

Version 2016.1

Monday, August 10, 2015

	Fix Google auth (#468)

Version 2016.0

Monday, August 10, 2015

	Fix fab server manage_run:dbshell

	Add tests for thunderdome API (#432)

	Sponsor updates (#437, #438): display company description
on sponsors page; remove company name benefit

	Numerous style updates

	Remove unused jquery.js file (#464)

	Allow selecting and changing the status of multiple proposals
at once (#451)

	Turn off debug logging in production (#445)

	Use right version of django-reversion for our version of Django (#463)

	Change hosting credit from OSU OSL to Rackspace (#462)

	Include abstract contents in exports (#456)

	Clean up some warnings from more recent Djangos (#449)

	Add celery (#448)

	Add uploading of receipts for financial aid (#427, #382, #383)

	Add missing migration (#439)

	Updates to fabfile for PSF-infra changing to Salt (#434, #435)

	Update Raven to 5.5.0 (#335, #420)

	Google login (#375, #416)

	Updates to sponsor details (#379, #380)

	Multiple contact email addresses for sponsors (#413, #381)

	Improve README (#412)

	Update to Django 1.7 (#408)

	Upgrade Pillow to 2.9.0 (#407)

	Fab manage_run (#406)

	Update to Djanog 1.6 (#405)

	Fixes for the vagrant development environment (#404)

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Pinax Symposion 0.5dev documentation

Index

 Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Pinax Symposion 0.5dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eldarion Team.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

